ar X iv : s ol v - in t / 9 80 40 17 v 1 2 5 A pr 1 99 8 Travelling Wave Solutions in Nonlinear Diffusive and Dispersive Media

نویسنده

  • E. P. Raposo
چکیده

We investigate the presence of soliton solutions in some classes of nonlinear partial differential equations, namely generalized Korteweg-de Vries-Burgers, Korteveg-de VriesHuxley, and Korteveg-de Vries-Burgers-Huxley equations, which combine effects of diffusion, dispersion, and nonlinearity. We emphasize the chiral behavior of the travelling solutions, whose velocities are determined by the parameters that define the equation. For some appropriate choices, we show that these equations can be mapped onto equations of motion of relativistic 1 + 1 dimensional φ and φ field theories of real scalar fields. We also study systems of two coupled nonlinear equations of the types mentioned. PACS numbers: 03.40.-t, 52.35.Fp, 63.20.Ry This work is supported in part by funds provided by the U. S. Department of Energy (D.O.E.) under cooperative research agreement DE-FC02-94ER40818, and by Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico, CNPq, Brazil. On leave from Departamento de F́ısica, Universidade Federal da Paráıba, Caixa Postal 5008, 58051970 João Pessoa, Paráıba, Brazil

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : s ol v - in t / 9 90 40 17 v 1 1 6 A pr 1 99 9 QUASI - PERIODIC AND PERIODIC SOLUTIONS FOR SYSTEMS OF COUPLED NONLINEAR SCHRÖDINGER EQUATIONS

We consider travelling periodic and quasi-periodic wave solutions of a set of coupled nonlinear Schrödinger equations. In fibre optics these equations can be used to model single mode fibers with strong birefingence and two-mode optical fibers. Recently these equations appear as model, which describe pulse-pulse interaction in wavelength-division-multiplexed channels of optical fiber transmissi...

متن کامل

ar X iv : s ol v - in t / 9 70 40 14 v 1 2 1 A pr 1 99 7 Trilinear representation and the Moutard transformation for the Tzitzéica equation

In this paper we present a trilinear form and a Darboux-type transformation to equation (ln v) xy = v − 1/v 2 considered by Tzitzéica in 1910. Soliton solutions are constructed by dressing the trivial solution.

متن کامل

ar X iv : s ol v - in t / 9 70 40 03 v 1 2 A pr 1 99 7 Convergent Normal Forms of Symmetric Dynamical Systems

It is shown that the presence of Lie-point-symmetries of (non-Hamiltonian) dynamical systems can ensure the convergence of the coordinate transformations which take the dynamical sytem (or vector field) into Poincaré-Dulac normal form.

متن کامل

ar X iv : s ol v - in t / 9 40 40 03 v 1 1 8 A pr 1 99 3 PROBLEM OF METRIZABILITY FOR THE DYNAMICAL SYSTEMS ACCEPTING THE NORMAL SHIFT

The problem of metrizability for the dynamical systems accepting the normal shift is formulated and solved. The explicit formula for the force field of metrizable Newtonian dynamical system¨r = F(r, ˙ r) is found.

متن کامل

ar X iv : s ol v - in t / 9 80 80 02 v 1 4 A ug 1 99 8 Polynomial rings of the chiral SU ( N ) 2 models

Via explicit diagonalization of the chiral SU (N) 2 fusion matrices, we discuss the possibility of representing the fusion ring of the chiral SU (N) models, at level K = 2, by a polynomial ring in a single variable when N is odd and by a polynomial ring in two-variable when N is even.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008